skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 15 until 2:00 AM ET on Friday, January 16 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Lin, Andrea_S J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present the discovery of GJ 251 c, a candidate super-Earth orbiting in the habitable zone (HZ) of its M dwarf host star. Using high-precision Habitable-zone Planet Finder and NEID RVs, in conjunction with archival RVs from the Keck I High Resolution Echelle Spectrometer, the Calar Alto High-resolution Search for M dwarfs with Exoearths with Near-infrared and optical Echelle Spectrograph, and the Spectropolarimétre Infrarouge, we improve the measured parameters of the known planet, GJ 251 b (Pb= 14.2370 days; m sin ( i ) = 3.85 0.33 + 0.35 M), and we significantly constrain the minimum mass of GJ 251 c, placing it in a plausibly terrestrial regime (Pc= 53.647 ± 0.044 days; m sin i c = 3.84 ± 0.75M). Using activity mitigation techniques that leverage chromatic information content, we perform a color-dependent analysis of the system and a detailed comparison of more than 50 models that describe the nature of the planets and stellar activity in the system. Due to GJ 251’s proximity to Earth (5.5 pc), next generation, 30 meter class telescopes will likely be able to image terrestrial planets in GJ 251’s HZ. In fact, GJ 251 c is currently the best candidate for terrestrial, HZ planet imaging in the northern sky. 
    more » « less
    Free, publicly-accessible full text available October 23, 2026
  2. ABSTRACT We report the first instance of an M dwarf/brown dwarf obliquity measurement for the TOI-2119 system using the Rossiter–McLaughlin effect. TOI-2119 b is a transiting brown dwarf orbiting a young, active early M dwarf ($$T_{\rm {eff}}$$ = 3553 K). It has a mass of 64.4 M$$_{\rm {J}}$$ and radius of 1.08 R$$_{\rm {J}}$$, with an eccentric orbit (e = 0.3) at a period of 7.2 d. For this analysis, we utilize NEID spectroscopic transit observations and ground-based simultaneous transit photometry from the Astrophysical Research Consortium and the Las Campanas Remote Observatory. We fit all available data of TOI-2119 b to refine the brown dwarf parameters and update the ephemeris. The classical Rossiter–McLaughlin technique yields a projected star–planet obliquity of $$\lambda =-0.8\pm 1.1^\circ$$ and a three-dimensional obliquity of $$\psi =15.7\pm 5.5^\circ$$. Additionally, we spatially resolve the stellar surface of TOI-2119 utilizing the Reloaded Rossiter–McLaughlin technique to determine the projected star–planet obliquity as $$\lambda =1.26 \pm 1.3^{\circ }$$. Both of these results agree within $$2\sigma$$ and confirm the system is aligned, where TOI-2119 b joins an emerging group of aligned brown dwarf obliquities. We also probe stellar surface activity on the surface of TOI-2119 in the form of centre-to-limb variations as well as the potential for differential rotation. Overall, we find tentative evidence for centre-to-limb variations on the star but do not detect evidence of differential rotation. 
    more » « less
  3. Abstract Brown dwarfs bridge the gap between stars and planets, providing valuable insight into both planetary and stellar-formation mechanisms. Yet the census of transiting brown-dwarf companions, in particular around M-dwarf stars, remains incomplete. We report the discovery of two transiting brown dwarfs around low-mass hosts using a combination of space- and ground-based photometry along with near-infrared radial velocities. We characterize TOI-5389Ab ( 68 . 0 2.2 + 2.2 M J ) and TOI-5610b ( 40 . 4 1.0 + 1.0 M J ), two moderately massive brown dwarfs orbiting early M-dwarf hosts (Teff = 3569 ± 59 K and 3618 ± 59 K, respectively). For TOI-5389Ab, the best fitting parameters are periodP = 10.40046 ± 0.00002 days, radius R BD = 0.82 4 0.031 + 0.033 RJ, and low eccentricity e = 0.096 2 0.0046 + 0.0027 . In particular, this constitutes one of the most extreme substellar-stellar companion-to-host mass ratios ofq= 0.150. For TOI-5610b, the best-fitting parameters are periodP = 7.95346 ± 0.00002 days, radius R BD = 0.88 7 0.031 + 0.031 RJ, and moderate eccentricity e = 0.35 4 0.012 + 0.011 . Both targets are expected to have shallow, but potentially observable, occultations: ≲500 ppm in the JohnsonKband. A statistical analysis of M-dwarf/BD systems reveals for the first time that those at short orbital periods (P < 13 days) exhibit a dearth of 13MJ < MBD < 40MJcompanions (q < 0.1) compared to those at slightly wider separations. 
    more » « less
    Free, publicly-accessible full text available April 3, 2026
  4. Abstract Recent discoveries of transiting giant exoplanets around M-dwarf stars (GEMS), aided by the all-sky coverage of TESS, are starting to stretch theories of planet formation through the core-accretion scenario. Recent upper limits on their occurrence suggest that they decrease with lower stellar masses, with fewer GEMS around lower-mass stars compared to solar-type. In this paper, we discuss existing GEMS both through confirmed planets, as well as protoplanetary disk observations, and a combination of tests to reconcile these with theoretical predictions. We then introduce the Searching for GEMS survey, where we utilize multidimensional nonparameteric statistics to simulate hypothetical survey scenarios to predict the required sample size of transiting GEMS with mass measurements to robustly compare their bulk-density with canonical hot Jupiters orbiting FGK stars. Our Monte Carlo simulations predict that a robust comparison requires about 40 transiting GEMS (compared to the existing sample of ∼15) with 5σmass measurements. Furthermore, we discuss the limitations of existing occurrence estimates for GEMS and provide a brief description of our planned systematic search to improve the occurrence rate estimates for GEMS. 
    more » « less
  5. Abstract We present the discovery of a low-density planet orbiting the high-metallicity early M-dwarf TOI-5688 A b. This planet was characterized as part of the search for transiting giant planets (R ≳ 8R) through the Searching for Giant Exoplanets around M-dwarf Stars (GEMS) survey. The planet was discovered with the Transiting Exoplanet Survey Satellite, and characterized with ground-based transits from Red Buttes Observatory, the Table Mountain Observatory of Pomona College, and radial velocity (RV) measurements with the Habitable-Zone Planet Finder on the 10 m Hobby Eberly Telescope and NEID on the WIYN 3.5 m telescope. From the joint fit of transit and RV data, we measure a planetary mass and radius of 124 ± 24M(0.39 ± 0.07MJ) and 10.4 ± 0.7R(0.92 ± 0.06RJ), respectively. The spectroscopic and photometric analysis of the host star TOI-5688 A shows that it is a metal-rich ([Fe/H] = 0.47 ± 0.16 dex) M2V star, favoring the core-accretion formation pathway as the likely formation scenario for this planet. Additionally, Gaia astrometry suggests the presence of a wide-separation binary companion, TOI-5688 B, which has a projected separation of ~5″ (1110 au) and is an M4V, making TOI-5688 A b part of the growing number of GEMS in wide-separation binary systems. 
    more » « less
    Free, publicly-accessible full text available March 3, 2026
  6. Abstract Kepler-51 is a ≲1 Gyr old Sun-like star hosting three transiting planets with radii ≈6–9Rand orbital periods ≈45–130 days. Transit timing variations (TTVs) measured with past Kepler and Hubble Space Telescope (HST) observations have been successfully modeled by considering gravitational interactions between the three transiting planets, yielding low masses and low mean densities (≲0.1 g cm−3) for all three planets. However, the transit time of the outermost transiting planet Kepler-51d recently measured by the James Webb Space Telescope 10 yr after the Kepler observations is significantly discrepant from the prediction made by the three-planet TTV model, which we confirmed with ground-based and follow-up HST observations. We show that the departure from the three-planet model is explained by including a fourth outer planet, Kepler-51e, in the TTV model. A wide range of masses (≲MJup) and orbital periods (≲10 yr) are possible for Kepler-51e. Nevertheless, all the coplanar solutions found from our brute-force search imply masses ≲10Mfor the inner transiting planets. Thus, their densities remain low, though with larger uncertainties than previously estimated. Unlike other possible solutions, the one in which Kepler-51e is around the 2:1 mean motion resonance with Kepler-51d implies low orbital eccentricities (≲0.05) and comparable masses (∼5M) for all four planets, as is seen in other compact multiplanet systems. This work demonstrates the importance of long-term follow-up of TTV systems for probing longer-period planets in a system. 
    more » « less
  7. Abstract We confirm TOI-4201 b as a transiting Jovian-mass planet orbiting an early M dwarf discovered by the Transiting Exoplanet Survey Satellite. Using ground-based photometry and precise radial velocities from NEID and the Planet Finder Spectrograph, we measure a planet mass of 2.59 0.06 + 0.07 MJ, making this one of the most massive planets transiting an M dwarf. The planet is ∼0.4% of the mass of its 0.63Mhost and may have a heavy-element mass comparable to the total dust mass contained in a typical class II disk. TOI-4201 b stretches our understanding of core accretion during the protoplanetary phase and the disk mass budget, necessitating giant planet formation to take place either much earlier in the disk lifetime or perhaps through alternative mechanisms like gravitational instability. 
    more » « less
  8. Abstract Giant exoplanets orbiting close to their host stars are unlikely to have formed in their present configurations1. These ‘hot Jupiter’ planets are instead thought to have migrated inward from beyond the ice line and several viable migration channels have been proposed, including eccentricity excitation through angular-momentum exchange with a third body followed by tidally driven orbital circularization2,3. The discovery of the extremely eccentric (e = 0.93) giant exoplanet HD 80606 b (ref. 4) provided observational evidence that hot Jupiters may have formed through this high-eccentricity tidal-migration pathway5. However, no similar hot-Jupiter progenitors have been found and simulations predict that one factor affecting the efficacy of this mechanism is exoplanet mass, as low-mass planets are more likely to be tidally disrupted during periastron passage6–8. Here we present spectroscopic and photometric observations of TIC 241249530 b, a high-mass, transiting warm Jupiter with an extreme orbital eccentricity ofe = 0.94. The orbit of TIC 241249530 b is consistent with a history of eccentricity oscillations and a future tidal circularization trajectory. Our analysis of the mass and eccentricity distributions of the transiting-warm-Jupiter population further reveals a correlation between high mass and high eccentricity. 
    more » « less
  9. Abstract Transiting giant exoplanets around M-dwarf stars (GEMS) are rare, owing to the low-mass host stars. However, the all-sky coverage of TESS has enabled the detection of an increasingly large number of them to enable statistical surveys like the Searching for GEMS survey. As part of this endeavor, we describe the observations of six transiting giant planets, which include precise mass measurements for two GEMS (K2-419Ab, TOI-6034b) and statistical validation for four systems, which includes validation and mass upper limits for three of them (TOI-5218b, TOI-5616b, TOI-5634Ab), while the fourth one—TOI-5414b is classified as a “likely planet.” Our observations include radial velocities from the Habitable-zone Planet Finder on the Hobby–Eberly Telescope, and MAROON-X on Gemini-North, along with photometry and high-contrast imaging from multiple ground-based facilities. In addition to TESS photometry, K2-419Ab was also observed and statistically validated as part of the K2 mission in Campaigns 5 and 18, which provide precise orbital and planetary constraints despite the faint host star and long orbital period of ∼20.4 days. With an equilibrium temperature of only 380 K, K2-419Ab is one of the coolest known well-characterized transiting planets. TOI-6034 has a late F-type companion about 40″ away, making it the first GEMS host star to have an earlier main-sequence binary companion. These confirmations add to the existing small sample of confirmed transiting GEMS. 
    more » « less